C++

C++ Review

Chapter 3

Posted by Lance on November 21, 2018

Content

You can git clone C++ Review here:

git clone https://github.com/lance-lh/learning-c-plusplus.git

Mind map

字符串字面值

字符串字面值是一串常量字符,字符串字面值常量用双引号括起来的零个或多个字符表示,为兼容C语言,C++中所有的字符串字面值都由编译器自动在末尾添加一个空字符。 字符串没有变量名字,自身表示自身

"Hello World!" //simple string literal
"" //empty string literal
"\nCC\toptions\tfile.[cC]\n" //string literal using newlines and tabs

字符字面值:'A' //single quote:character literal 字符串字面值: "A" //double quote:character string literal.包含字母A和空字符的字符串

字符串字面值的连接:

std::out << "a multi-line "+
"string literal"+
" using concatenation"
<< std::endl;

输出 : a multi-line string literal using concatenation

字符串

C++中,有两种类型的字符串表示形式:

  • C-风格字符串
  • C++引入的string

C-风格字符串

C 风格的字符串起源于 C 语言,并在 C++ 中继续得到支持。字符串实际上是使用 null 字符 ‘\0’ 终止的一维字符数组。因此,一个以 null 结尾的字符串,包含了组成字符串的字符。下面的声明和初始化创建了一个 “Hello” 字符串。由于在数组的末尾存储了空字符,所以字符数组的大小比单词 “Hello” 的字符数多一个。

char greeting[6] = {'H', 'e', 'l', 'l', 'o', '\0'};

其实,不需要把 null 字符放在字符串常量的末尾。C++ 编译器会在初始化数组时,自动把 ‘\0’ 放在字符串的末尾。所以也可以利用下面的形式进行初始化

char greeting[] = "Hello";

以下是 C/C++ 中定义的字符串的内存表示:

C++ 中有大量的函数用来操作以 null 结尾的字符串:

序号 函数 功能
1 strcpy(s1,s2) 复制字符串 s2 到字符串 s1
2 strcat(s1,s2) 连接字符串 s2 到字符串 s1 的末尾
3 strlen(s1) 返回字符串 s1 的长度
4 strcmp(s1,s2) 返回s1与s2的比较结果
5 strchr(s1,ch) 返回一个指针,指向字符串s1中字符ch的第一次出现的位置
6 strstr(s1,s2) 返回一个指针,指向字符串s1中s2的第一次出现的位置

C++引入的string类

C++ 标准库提供了 string 类类型,支持上述所有的操作,另外还增加了其他更多的功能。比如:

  • append() – 在字符串的末尾添加字符
  • find() – 在字符串中查找字符串
  • insert() – 插入字符
  • length() – 返回字符串的长度
  • replace() – 替换字符串
  • substr() – 返回某个子字符串

4种字符串类型

C++中的字符串一般有以下四种类型,

  • string
  • char*
  • const char*
  • char[]

下面分别做简单介绍,并说明其中的一些区别

string string是一个C++类库中的一个类,它位于名称空间std中,因此必须使用using编译指令或者std::string来引用它。它包含了对字符串的各种常用操作,它较char*的优势是内容可以动态拓展,以及对字符串操作的方便快捷,用+号进行字符串的连接是最常用的操作

char* char* 是指向字符串的指针(其实严格来说,它是指向字符串的首个字母,你可以让它指向一串常量字符串。

const char* 该声明指出,指针指向的是一个const char类型,即不能通过当前的指针对字符串的内容作出修改

注意这里有两个概念:

  • char * const [指向字符的静态指针]

  • const char * [指向静态字符的指针]

    前者const修饰的是指针,代表不能改变指针 后者const修饰的是char,代表字符不能改变,但是指针可以变,也就是说该指针可以指针其他的const char

char[]

char*与许多相同点,代表字符数组,可以对应一个字符串,如

char * a="string1";
char b[]="string2";

这里a是一个指向char变量的指针,b则是一个char数组(字符数组) 也就是说:

二者的不同点

一,char*是变量,值可以改变, char[]是常量,值不能改变! a是一个char型指针变量,其值(指向)可以改变; b是一个char型数组的名字,也是该数组首元素的地址,是常量,其值不可以改变

二,char[]对应的内存区域总是可写,char*指向的区域有时可写,有时只读

比如:

char * a="string1";
char b[]="string2";
gets(a); //试图将读入的字符串保存到a指向的区域,运行崩溃! 
gets(b) //OK

解释a指向的是一个字符串常量,即指向的内存区域只读; b始终指向他所代表的数组在内存中的位置,始终可写!

注意,若改成这样gets(a)就合法了:

char * a="string1";
char b[]="string2";
a=b; //a,b指向同一个区域
gets(a) //OK
printf("%s",b) //会出现gets(a)时输入的结果

解释a的值变成了是字符数组首地址,即&b[0],该地址指向的区域是char *或者说 char[8],习惯上称该类型为字符数组,其实也可以称之为“字符串变量”,区域可读可写。

总结char *本身是一个字符指针变量,但是它既可以指向字符串常量,又可以指向字符串变量,指向的类型决定了对应的字符串能不能改变!

三,char \* char[]的初始化操作有着根本区别: 测试代码:

char *a="Hello World"; 
char b[]="Hello World"; 
printf("%s, %d\n","Hello World", "Hello World"); 
printf("%s, %d %d\n", a, a,  &a);                           
printf("%s, %d %d\n", b,     b,  &b);

结果:

Hello World13457308
Hello World13457308    2030316
Hello World2030316 2030316

结果可见:尽管都对应了相同的字符串,但”Hellow World”的地址 和 a对应的地址相同,与b指向的地址有较大差异;&a&b都是在同一内存区域,且&b==b 根据c内存区域划分知识,我们知道,局部变量都创建在栈区,而常量都创建在文字常量区,显然,ab都是栈区的变量,但是a指向了常量(字符串常量),b则指向了变量(字符数组),指向了自己(&b==b==&b[0])。 说明以下问题: char * a=”string1”;是实现了3个操作

  1. 声明一个char*变量(也就是声明了一个指向char的指针变量;

  2. 在内存中的文字常量区中开辟了一个空间存储字符串常量”string1”

  3. 返回这个区域的地址,作为值,赋给这个字符指针变量a

    最终的结果:指针变量a指向了这一个字符串常量“string1” (注意,如果这时候我们再执行:char * c=”string1”;则,c==a,实际上,只会执行上述步骤的1和3,因为这个常量已经在内存中创建)

char b[]=”string2”;则是实现了2个操作:

  1. 声明一个char 的数组,
  2. 为该数组“赋值”,即将”string2”的每一个字符分别赋值给数组的每一个元素 最终的结果:“数组的值”(注意不是b的值)等于”string2”,而不是b指向一个字符串常量

实际上, char * a=”string1”; 的写法是不规范的! 因为a指向了即字符常量,一旦strcpy(a,”string2”)就糟糕了,试图向只读的内存区域写入,程序会崩溃的!尽管VS下的编译器不会警告,但如果你使用了语法严谨的Linux下的C编译器GCC,或者在windows下使用MinGW编译器就会得到警告。

所以,我们还是应当按照”类型相同赋值”的原则来写代码:

const char * a="string1";

保证意外赋值语句不会通过编译

另外,关于char*char[]在函数参数中还有一个特殊之处,运行下面的代码

void fun1 ( char *p1,  char p2[] ) {
 printf("%s %d %d\n",p1,p1,&p1);
 printf("%s %d %d\n",p2,p2,&p2);
p2="asdf"; //通过! 说明p2不是常量! 
printf("%s %d %d\n",p2,p2,&p2);
}
void main({
char a[]="Hello";
fun1(a,a);
}

运行结果:

Hello 3471628 3471332
Hello 3471628 3471336
asdf 10704764 3471336

结果出乎意料!上面结果表明p2这时候根本就是一个指针变量! 结论是:作为函数的形式参数,两种写法完全等效的!都是指针变量!

const char*char[]的区别:

const char * a=string1 
char b[]=string2; 二者的区别在于:
  1. aconst char 类型, b是char const类型 ( 或者理解为 (const char)xxchar (const xx) )
  2. a是一个指针变量,a的值(指向)是可以改变的,但a只能指向(字符串)常量,指向的区域的内容不可改变;
  3. b是一个指针常量,b的值(指向)不能变;但b指向的目标(数组b在内存中的区域)的内容是可变的
  4. 作为函数的声明的参数的时候,char []是被当做char *来处理的!两种形参声明写法完全等效!

字符串类型之间的转换: stringconst char*char*char[]相互转换

一、转换表格

源格式->目标格式 string char* const char* char[]
string NULL 直接赋值 直接赋值 直接赋值
char* strcpy NULL const_cast char*=char
const char* c_str() 直接赋值 NULL const char*=char;
char[] copy() strncpy_s() strncpy_s() NULL

二、总结方法:

  1. 变成string,直接赋值。
  2. char[]变成别的,直接赋值。
  3. char*const char*容易,const char*char*麻烦。<const_cast><char*>(constchar*);
  4. stringchar*要通过const char*中转。
  5. 变成char[]string逐个赋值,char* const char* strncpy_s()

三,代码示例

1、string转为其他类型

①、stringconst char*

#include "stdafx.h"
#include <iostream>
int _tmain(intargc, _TCHAR* argv[])
{
    std::string str = "HelloWorld!";     //初始化string类型,并具体赋值
    const char* constc = nullptr;         //初始化const char*类型,并赋值为空
    constc= str.c_str();                 //string类型转const char*类型
    printf_s("%s\n", str.c_str());        //打印string类型数据 .c_str()
    printf_s("%s\n", constc);             //打印const char*类型数据
    return 0;
}

②、stringchar*

#include "stdafx.h"
#include <iostream>
int _tmain(intargc, _TCHAR* argv[])
{
    std::string str = "HelloWorld!";     //初始化string类型,并具体赋值
    char* c = nullptr;                    //初始化char*类型,并赋值为空
    const char* constc = nullptr;         //初始化const char*类型,并赋值为空
    constc= str.c_str();                 //string类型转const char*类型
    c= const_cast<char*>(constc);        //const char*类型转char*类型
    printf_s("%s\n", str.c_str());        //打印string类型数据 .c_str()
    printf_s("%s\n",c);                  //打印char*类型数据
    return 0;
}

③、stringchar[]

#include "stdafx.h"
#include <iostream>
int _tmain(intargc, _TCHAR* argv[])
{
    std::string str = "HelloWorld!";      //初始化string类型,并具体赋值
    char arrc[20] = {0};                   //初始化char[]类型,并赋值为空
    for (int i = 0; i < str.length(); i++) //string类型转char[]类型
    {
        arrc[i]=str[i];
    }
    printf_s("%s\n", str.c_str());         //打印string类型数据 .c_str()
    printf_s("%s\n", arrc);                //打印char[]类型数据
    return 0;
}

2、const char*转为其他类型

const char*string

#include "stdafx.h"
#include <iostream>
int _tmain(intargc, _TCHAR* argv[])
{
    const char* constc = "Hello World!";     //初始化const char* 类型,并具体赋值
    std::string str;                        //初始化string类型
    str= constc;                            //const char*类型转string类型
    printf_s("%s\n", constc);                //打印const char* 类型数据
    printf_s("%s\n", str.c_str());           //打印string类型数据
    return 0;
}

const char* char*

#include "stdafx.h"
#include <iostream>
int _tmain(intargc, _TCHAR* argv[])
{
    const char* constc = "Hello World!";     //初始化const char* 类型,并具体赋值
    char* c = nullptr;                       //初始化char*类型
    c= const_cast<char*>(constc);           //const char*类型转char*类型
    printf_s("%s\n", constc);                //打印const char* 类型数据
    printf_s("%s\n", c);                     //打印char*类型数据
    return 0;
}

const char*char[]

#include "stdafx.h"
#include <iostream>
int _tmain(intargc, _TCHAR* argv[])
{
    const char* constc = "Hello World!";     //初始化const char* 类型,并具体赋值
    char arrc[20] = { 0 };                   //初始化char[]类型,并赋值为空
    strncpy_s(arrc,constc,20);              //const char*类型转char[]类型
    printf_s("%s\n", constc);                //打印const char* 类型数据
    printf_s("%s\n", arrc);                  //打印char[]类型数据
    return 0;
}

3、char*转为其他类型

char*string

#include "stdafx.h"
#include <iostream>
int _tmain(intargc, _TCHAR* argv[])
{
    char* c = "HelloWorld!";           //初始化char* 类型,并具体赋值
    std::string str;                   //初始化string类型
    str= c;                            //char*类型转string类型
    printf_s("%s\n", c);                //打印char* 类型数据
    printf_s("%s\n", str.c_str());      //打印string类型数据
    return 0;
}

char*const char*

#include "stdafx.h"
#include <iostream>
int _tmain(intargc, _TCHAR* argv[])
{
    char* c = "HelloWorld!";         //初始化char* 类型,并具体赋值
    const char* constc = nullptr;     //初始化const char* 类型,并具体赋值
    constc= c;                       //char*类型转const char* 类型
    printf_s("%s\n", c);              //打印char* 类型数据
    printf_s("%s\n", constc);         //打印const char* 类型数据
    return 0;
}

char*char[]

#include "stdafx.h"
#include <iostream>
int _tmain(intargc, _TCHAR* argv[])
{
    char* c = "HelloWorld!";         //初始化char* 类型,并具体赋值
    char arrc[20] = { 0 };           //初始化char[] 类型,并具体赋值
    strncpy_s(arrc,c,20);             //char*类型转char[] 类型
    printf_s("%s\n", c);              //打印char* 类型数据
    printf_s("%s\n", arrc);           //打印char[]类型数据
    return 0;
}

4、char[]转为其他类型

#include "stdafx.h"
#include <iostream>
int _tmain(intargc, _TCHAR* argv[])
{
    char arrc[20] = "HelloWorld!";//初始化char[] 类型并具体赋值
    std::string str;                 //初始化string
    const char* constc = nullptr;   //初始化const char*
    char*c = nullptr;                //初始化char*
    str= arrc;                     //char[]类型转string类型
    constc= arrc;             //char[]类型转const char* 类型
    c= arrc;                        //char[]类型转char*类型
    printf_s("%s\n", arrc);         //打印char[]类型数据
    printf_s("%s\n", str.c_str());  //打印string类型数据
    printf_s("%s\n", constc);       //打印const char* 类型数据
    printf_s("%s\n", c);            //打印char*类型数据
    return 0;
}

一、vector?

向量(Vector)是一个封装了动态大小数组的顺序容器(Sequence Container)。跟任意其它类型容器一样,它能够存放各种类型的对象。可以简单的认为,向量是一个能够存放任意类型的动态数组。


二、容器特性

1.顺序序列

顺序容器中的元素按照严格的线性顺序排序。可以通过元素在序列中的位置访问对应的元素。

2.动态数组

支持对序列中的任意元素进行快速直接访问,甚至可以通过指针算述进行该操作。操供了在序列末尾相对快速地添加/删除元素的操作。

3.能够感知内存分配器的(Allocator-aware)

容器使用一个内存分配器对象来动态地处理它的存储需求。


三、基本函数实现

1.构造函数

  • vector():创建一个空vector
  • vector(int nSize):创建一个vector,元素个数为nSize
  • vector(int nSize,const t& t):创建一个vector,元素个数为nSize,且值均为t
  • vector(const vector&):复制构造函数
  • vector(begin,end):复制[begin,end)区间内另一个数组的元素到vector中

2.增加函数

  • void push_back(const T& x):向量尾部增加一个元素X
  • iterator insert(iterator it,const T& x):向量中迭代器指向元素前增加一个元素x
  • iterator insert(iterator it,int n,const T& x):向量中迭代器指向元素前增加n个相同的元素x
  • iterator insert(iterator it,const_iterator first,const_iterator last):向量中迭代器指向元素前插入另一个相同类型向量的[first,last)间的数据

3.删除函数

  • iterator erase(iterator it):删除向量中迭代器指向元素
  • iterator erase(iterator first,iterator last):删除向量中[first,last)中元素
  • void pop_back():删除向量中最后一个元素
  • void clear():清空向量中所有元素

4.遍历函数

  • reference at(int pos):返回pos位置元素的引用
  • reference front():返回首元素的引用
  • reference back():返回尾元素的引用
  • iterator begin():返回向量头指针,指向第一个元素
  • iterator end():返回向量尾指针,指向向量最后一个元素的下一个位置
  • reverse_iterator rbegin():反向迭代器,指向最后一个元素
  • reverse_iterator rend():反向迭代器,指向第一个元素之前的位置

5.判断函数

  • bool empty() const:判断向量是否为空,若为空,则向量中无元素

6.大小函数

  • int size() const:返回向量中元素的个数
  • int capacity() const:返回当前向量张红所能容纳的最大元素值
  • int max_size() const:返回最大可允许的vector元素数量值

7.其他函数

  • void swap(vector&):交换两个同类型向量的数据
  • void assign(int n,const T& x):设置向量中第n个元素的值为x
  • void assign(const_iterator first,const_iterator last):向量中[first,last)中元素设置成当前向量元素

8.看着清楚

1.push_back 在数组的最后添加一个数据

2.pop_back 去掉数组的最后一个数据

3.at 得到编号位置的数据

4.begin 得到数组头的指针

5.end 得到数组的最后一个单元+1的指针

6.front 得到数组头的引用

7.back 得到数组的最后一个单元的引用

8.max_size 得到vector最大可以是多大

9.capacity 当前vector分配的大小

10.size 当前使用数据的大小

11.resize 改变当前使用数据的大小,如果它比当前使用的大,者填充默认值

12.reserve 改变当前vecotr所分配空间的大小

13.erase 删除指针指向的数据项

14.clear 清空当前的vector

15.rbegin 将vector反转后的开始指针返回(其实就是原来的end-1)

16.rend 将vector反转构的结束指针返回(其实就是原来的begin-1)

17.empty 判断vector是否为空

18.swap 与另一个vector交换数据


四、基本用法

#include < vector> 
using namespace std;

五、简单介绍

  1. Vector<类型>标识符
  2. Vector<类型>标识符(最大容量)
  3. Vector<类型>标识符(最大容量,初始所有值)
  4. Int i[5]={1,2,3,4,5} Vector<类型>vi(I,i+2);//得到i索引值为3以后的值
  5. Vector< vector< int> >v; 二维向量//这里最外的<>要有空格。否则在比较旧的编译器下无法通过

实例

1.pop_back()&push_back(elem)实例在容器最后移除和插入数据

实例

#include <string.h>
#include <vector>
#include <iostream>
using namespace std;
 
int main()
{
    vector<int>obj;//创建一个向量存储容器 int
    for(int i=0;i<10;i++) // push_back(elem)在数组最后添加数据 
    {
        obj.push_back(i);
        cout<<obj[i]<<",";    
    }
 
    for(int i=0;i<5;i++)//去掉数组最后一个数据 
    {
        obj.pop_back();
    }
 
    cout<<"\n"<<endl;
 
    for(int i=0;i<obj.size();i++)//size()容器中实际数据个数 
    {
        cout<<obj[i]<<",";
    }
 
    return 0;
}

输出结果为:

0,1,2,3,4,5,6,7,8,9,

0,1,2,3,4,

2.clear()清除容器中所有数据

实例

#include <string.h>
#include <vector>
#include <iostream>
using namespace std;
 
int main()
{
    vector<int>obj;
    for(int i=0;i<10;i++)//push_back(elem)在数组最后添加数据 
    {
        obj.push_back(i);
        cout<<obj[i]<<",";
    }
 
    obj.clear();//清除容器中所以数据
    for(int i=0;i<obj.size();i++)
    {
        cout<<obj[i]<<endl;
    }
 
    return 0;
}

输出结果为:

0,1,2,3,4,5,6,7,8,9,

3.排序

实例

#include <string.h>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;
 
int main()
{
    vector<int>obj;
 
    obj.push_back(1);
    obj.push_back(3);
    obj.push_back(0);
 
    sort(obj.begin(),obj.end());//从小到大
 
    cout<<"从小到大:"<<endl;
    for(int i=0;i<obj.size();i++)
    {
        cout<<obj[i]<<",";  
    } 
 
    cout<<"\n"<<endl;
 
    cout<<"从大到小:"<<endl;
    reverse(obj.begin(),obj.end());//从大到小 
    for(int i=0;i<obj.size();i++)
    {
        cout<<obj[i]<<",";
    }
    return 0;
}

输出结果为:

从小到大:
0,1,3,

从大到小:
3,1,0,

1.注意 sort 需要头文件 **#include **

2.如果想 sort 来降序,可重写 sort

bool compare(int a,int b) 
{ 
    return a< b; //升序排列,如果改为return a>b,则为降序 
} 
int a[20]={2,4,1,23,5,76,0,43,24,65},i; 
for(i=0;i<20;i++) 
    cout<< a[i]<< endl; 
sort(a,a+20,compare);

4.访问(直接数组访问&迭代器访问)

实例

#include <string.h>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;
 
int main()
{
    //顺序访问
    vector<int>obj;
    for(int i=0;i<10;i++)
    {
        obj.push_back(i);   
    } 
 
    cout<<"直接利用数组:"; 
    for(int i=0;i<10;i++)//方法一 
    {
        cout<<obj[i]<<" ";
    }
 
    cout<<endl; 
    cout<<"利用迭代器:" ;
    //方法二,使用迭代器将容器中数据输出 
    vector<int>::iterator it;//声明一个迭代器,来访问vector容器,作用:遍历或者指向vector容器的元素 
    for(it=obj.begin();it!=obj.end();it++)
    {
        cout<<*it<<" ";
    }
    return 0;
}

输出结果为:

直接利用数组:0 1 2 3 4 5 6 7 8 9 
利用迭代器:0 1 2 3 4 5 6 7 8 9

5.二维数组两种定义方法(结果一样)

方法一

#include <string.h>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;
 
int main()
{
    int N=5, M=6; 
    vector<vector<int> > obj(N); //定义二维动态数组大小5行 
    for(int i =0; i< obj.size(); i++)//动态二维数组为5行6列,值全为0 
    { 
        obj[i].resize(M); 
    } 
 
    for(int i=0; i< obj.size(); i++)//输出二维动态数组 
    {
        for(int j=0;j<obj[i].size();j++)
        {
            cout<<obj[i][j]<<" ";
        }
        cout<<"\n";
    }
    return 0;
}

方法二

#include <string.h>
#include <vector>
#include <iostream>
#include <algorithm>
using namespace std;
 
int main()
{
    int N=5, M=6; 
    vector<vector<int> > obj(N, vector<int>(M)); //定义二维动态数组5行6列 
 
    for(int i=0; i< obj.size(); i++)//输出二维动态数组 
    {
        for(int j=0;j<obj[i].size();j++)
        {
            cout<<obj[i][j]<<" ";
        }
        cout<<"\n";
    }
    return 0;
}

输出结果为:

0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

迭代器

是一种检查容器内元素并遍历元素的数据类型。可以替代下标访问vector对象的元素。

每种容器类型都定义了自己的迭代器类型,如 vector

vector<int>::iterator iter;

这符语句定义了一个名为 iter 的变量,它的数据类型是 vector 定义的 iterator 类型。每个标准库容器类型都定义了一个名为 iterator 的成员,这里的 iterator 与迭代器实际类型的含义相同。

begin 和 end 操作

每种容器都定义了一对命名为 begin 和 end 的函数,用于返回迭代器。如果容器中有元素的话,由 begin 返回的迭代器指向第一个元素:

vector<int>::iterator iter = ivec.begin();

上述语句把 iter 初始化为由名为 vector 操作返回的值。假设 vector 不空,初始化后,iter 即指该元素为 ivec[0]。由 end 操作返回的迭代器指向 vector 的“末端元素的下一个”。表明它指向了一个不存在的元素。如果 vector 为空,begin 返回的迭代器与 end 返回的迭代器相同。由 end 操作返回的迭代器并不指向 vector 中任何实际的元素,相反,它只是起一个哨兵(sentinel)的作用,表示我们已处理完 vector 中所有元素。 【备注:不用担心begin和end在循环中的条件判断。大胆使用吧!】
vector 迭代器的自增和解引用运算
迭代器类型可使用解引用操作符(dereference operator)(*)来访问迭代器所指向的元素:

*iter = 0;

解引用操作符返回迭代器当前所指向的元素。假设 iter 指向 vector 对象 ivec 的第一元素,那么 *iter 和 ivec[0] 就是指向同一个元素。上面这个语句的效果就是把这个元素的值赋为 0。 迭代器使用自增操作符向前移动迭代器指向容器中下一个元素。从逻辑上说,迭代器的自增操作和 int 型对象的自增操作类似。对 int 对象来说,操作结果就是把 int 型值“加 1”,而对迭代器对象则是把容器中的迭代器“向前移动一个位置”。因此,如果 iter 指向第一个元素,则 ++iter 指向第二个元素。 由于 end 操作返回的迭代器不指向任何元素,因此不能对它进行解引用或自增操作。
迭代器的其他操作
另一对可执行于迭代器的操作就是比较:用 == 或 != 操作符来比较两个迭代器,如果两个迭代器对象指向同一个元素,则它们相等,否则就不相等。
迭代器应用的程序示例
1、使用迭代器和下标改变vector的内容
这个很简单,请看代码。

#include <iostream>
#include <string>
#include <vector>
 
int print_int_vector(std::vector<int> ivec)
{
	for(std::vector<int>::size_type ix =0, j = 0; ix != ivec.size(); ++ix, ++j)
	{
		std::cout<<ivec[ix]<<" "; //加空格!
	}
	std::cout<<std::endl;
	return 0;
}
 
int main()
{
	std::vector<int> ivec(10, 68); // empty vector
	print_int_vector(ivec);
	// reset all the elements in ivec to 0
	/*
        // 使用下标
	for (std::vector<int>::size_type ix = 0; ix != ivec.size(); ++ix)
	{
	    ivec[ix] = 0;
	}
	*/
	// equivalent loop using iterators to reset all the elements in ivec to 0
	for (std::vector<int>::iterator iter = ivec.begin(); iter != ivec.end(); ++iter)
		*iter = 0; // set element to which iter refers to 0
	print_int_vector(ivec);
	return 0;
}

2、tuple功能的实现【不可变性】

const_iterator类型只能用于读取容器内元素,但不能改变其值。 当我们对普通 iterator 类型解引用时,得到对某个元素的非 const。而如果我们对 const_iterator 类型解引用时,则可以得到一个指向 const 对象的引用),如同任何常量一样,该对象不能进行重写。 如果使用const_itreator进行重写,编译时会报错! 使用 const_iterator 类型时,我们可以得到一个迭代器,它自身的值可以改变,但不能用来改变其所指向的元素的值。可以对迭代器进行自增以及使用解引用操作符来读取值,但不能对该元素赋值。 【注意:不要把 const_iterator 对象与 const 的 iterator 对象混淆起来。声明一个 const 迭代器时,必须初始化迭代器。一旦被初始化后,就不能改变它的值。】

vector<int> nums(10); // nums is nonconst
const vector<int>::iterator cit = nums.begin();
*cit = 1; // ok: cit can change its underlying element
++cit; // error: can't change the value of cit

【注意:const_iterator 对象可以用于 const vector 或非 const vector,因为不能改写元素值。const 迭代器这种类型几乎没什么用处:一旦它被初始化后,只能用它来改写其指向的元素,但不能使它指向任何其他元素。】 tuple不可变的实现需要使用const声明!const vector nums(10, 9);

总结

1、const_iterator需要注意:这个vector本身还是可变的,只不过对const_iterator类型解引用的对象不可变。

2、const迭代器也就是只能指向其所指向的元素,不能通过++等操作去指向其他元素。但是,所指向这个元素可以改变。

3、需要定义真正tuple,那就用const vector nums(10, 9);来定义!此时,必须使用const_iterator 来获取每个元素的值。

迭代器的算术操作

1、可以对迭代器对象加上或减去一个整形值。这样做将产生一个新的迭代器,其位置在 iter 所指元素之前(加)或之后(减) n 个元素的位置。加或减之后的结果必须指向 iter 所指 vector 中的某个元素,或者是 vector 末端的后一个元素。加上或减去的值的类型应该是 vector 的 size_type 或 difference_type 类型,例子:

int main()
{
	std::vector<int> ivec(10, 68); 
	print_int_vector(ivec);
	int i = 0;
	for (std::vector<int>::iterator iter = ivec.begin(); iter != ivec.end(); ++iter, i++)
		*iter = i; // set element to which iter refers to i
	print_int_vector(ivec);
	std::vector<int>::iterator iter = ivec.begin();
    iter += 100;
    std::cout<<*iter;
 
	return 0;
}

本例子中ivec有10个元素,iter+=j,j在10以内都不会有错(0~9),大于等于10则会出现溢出问题,编译器,运行中间都不会报错!可以加当然可以减。

2、iter1 - iter2: 该表达式用来计算两个迭代器对象的距离,该距离是名为 difference_type 的 signed 类型 size_type 的值,这里的 difference_type 是 signed 类型,因为减法运算可能产生负数的结果。该类型可以保证足够大以存储任何两个迭代器对象间的距离。iter1 与 iter2 两者必须都指向同一 vector 中的元素,或者指向 vector 末端之后的下一个元素。

3、可以用迭代器算术操作来移动迭代器直接指向某个元素,例如,下面语句直接定位于 vector 中间元素:

vector<int>::iterator mid = vi.begin() + vi.size() / 2;

上述代码用来初始化 mid 使其指向 vi 中最靠近正中间的元素。这种直接计算迭代器的方法,与用迭代器逐个元素自增操作到达中间元素的方法是等价的,但前者的效率要高得多。

4、任何改变 vector 长度的操作都会使已存在的迭代器失效。例如,在调用 push_back 之后,就不能再信赖指向 vector 的迭代器的值了。 请看例子:

*iter = i; // set element to which iter refers to i
ivec.push_back(i*2);

加上这句代码没问题,正确运行,但是,我们试图在for循环里面执行,即:

{
    *iter = i; // set element to which iter refers to i
    ivec.push_back(i*2);
}

则会莫名其妙退出!

Reference