Tree Traversal

Posted by Lance on August 26, 2019

Pre-order

root -> left -> right

# recursive solution

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution:
    def preorderTraversal(self, root: TreeNode) -> List[int]:
        '''
        :param root: TreeNode
        :return: List[int]
        '''
        # order: root, left, right
        # recursive solution
        res = []
        if root:
            res.append(root.val)
            res += self.preorderTraversal(root.left)
            res += self.preorderTraversal(root.right)
        return res
# iterative solution

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution:
    def preorderTraversal(self, root: TreeNode) -> List[int]:
        '''
        :param root: TreeNode
        :return: List[int]
        '''
        # order: root, left, right
        # iterative solution
        # add root val in res first, then stack pop the left node val, finally right ones
        # finally, the stack contains root, left and right subtree val

        res, stack = [], [root]
        while stack:
            node = stack.pop()
            
            if node:
                res.append(node.val)
                stack.append(node.right)
                stack.append(node.left)
                
        return res

In-order

left -> root -> right

# recursive solution


# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution:
    def inorderTraversal(self, root):
        '''
        :param root: TreeNode
        :return: List[int]
        '''
        res = []
        if root:
            res = self.inorderTraversal(root.left)
            res.append(root.val)
            res += self.inorderTraversal(root.right)
        return res
# Iterative solution using stack

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution:
    def inorderTraversal(self, root):
        '''
        :param root: TreeNode
        :return: List[int]
        '''
        
        # order: left -> root -> right
        res, stack = [], []
        while True:
        	# iteratively till root and all left subtree branch are pushed into the stack
            while root: 
                stack.append(root)  # add root addr in stack
                root = root.left    # now root changes to be its left node
                
            # use pop method and finally return res as result
            if not stack:
                return res
            
            # pop left subtree first, then root and finally right subtree
            node = stack.pop()
            # add data into res
            res.append(node.val)
            
            # check right child of the poped node
            root = node.right

Post-order

left -> right -> root

# recursive solution

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution:
    def postorderTraversal(self, root: TreeNode) -> List[int]:
        '''
        :param root: TreeNode
        :return: List[int]
        '''
        # order: left, right, root
        # recursive solution
        res = []
        if root:
            res = self.postorderTraversal(root.left)
            res += self.postorderTraversal(root.right)
            res.append(root.val)
        return res
# iterative solution

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution:
    def postorderTraversal(self, root: TreeNode) -> List[int]:
        '''
        :param root: TreeNode
        :return: List[int]
        '''
        # order: left, right, root
        # iterative solution
        # add root val in res first, then stack pop the right node val, finally left ones
        # finally, the stack contains root, right and left subtree val

        res, stack = [], [root]
        while stack:
            node = stack.pop()
            
            if node:
                res.append(node.val)
                stack.append(node.left)
                stack.append(node.right)
                
        return res[::-1]

Level-order


# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution:
    def levelOrder(self, root: TreeNode) -> List[List[int]]:
        if root is None:
            return []
        # cur represents level or node addr
        res, cur = [], [root]
        
        # loop till cur traverse to the leaf node
        while cur:
            tmp, new = [], []

            for node in cur:
                # add value into tmp
                tmp.append(node.val)
                # new to store addr
                if node.left:
                    new.append(node.left)
                if node.right:
                    new.append(node.right)
            res.append(tmp)
            #update cur
            cur = new
        
        return res

Construct tree via pre-order and in-order

  1. find root in pre-order
  2. fetch left and right part of tree in in-order and search in pre-order
  3. root -> left -> right
# Definition for a binary tree node.
# class TreeNode(object):
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution(object):
    def buildTree(self, preorder, inorder):
        """
        :type preorder: List[int]
        :type inorder: List[int]
        :rtype: TreeNode
        """
        if inorder:
            ind = inorder.index(preorder.pop(0))
            root = TreeNode(inorder[ind])
            root.left = self.buildTree(preorder, inorder[0:ind])
            root.right = self.buildTree(preorder, inorder[ind+1:])
            return root

Construct tree via in-order and post-order

  1. find root in post-order
  2. fetch left and right part of tree in in-order and search in post-order
  3. root -> right -> left

That’s because inorder traversal goes ‘Left-Parent-Right’ and postorder traversal goes ‘Left-Right-Parent’.

And, postorder.pop() keeps picking the right-most element of the list, that means it should go ‘Parent-(one of parents of) Right (subtree) - Left’.

So, switching the order doesn’t work.

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, x):
#         self.val = x
#         self.left = None
#         self.right = None

class Solution:
    def buildTree(self, inorder: List[int], postorder: List[int]) -> TreeNode:
        if not inorder or not postorder:
            return None
        if inorder:
            ind = inorder.index(postorder.pop())
            root = TreeNode(inorder[ind])
            root.right = self.buildTree(inorder[ind+1:], postorder)
            root.left = self.buildTree(inorder[0:ind], postorder)
        return root